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An efficient and accurate method is described for computing a class of definite integrals 
that have arisen in plasma physics and that arise in the theory of frequency modulated 
radio transmission. 

I. I~Tk00uCT10N 

In this paper we discuss an efficient method for computing a class of definite 
integrals that can be very time-consuming to evaluate by standard techniques such 
as the trapezoidal rule or Gauss quadrature. The general form of the integrals in 
question is 

Z(s; ak 3 bk) = & j:” dg, exp [i [ST + g (ak cos kp, + bk sin kd] 1’ (1) 

where s and k are integers, and the aK and bk are real constants. As the magnitudes 
of the parameters s, uk , and b, increase, the integrand becomes increasingly 
oscillatory. 

Our interest in these integrals, which are Fourier integrals of exponentials of 
truncated Fourier series, arose from the fact that they play an important role in 
the application of a particular numerical method to a nonlinear problem in plasma 
physics [l]. In that application it was important to be able to evaluate the integrals 
rapidly for a rather large range of values of the parameters (for example, 1 s I < 10, 
1 a, 1 < 50, and I bl, I < 50). The integrals are also encountered in radio 
engineering, as can be seen by noting that Eq. (1) is the general form of the Fourier 
coefficients of a frequency modulated radio signal for which the modulation itself 
can be represented as a Fourier series with a finite number of terms. 

To evaluate the integral defined by Eq. (1) when the parameters ak and bk are 
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small, we first transform it into a contour integral around the unit circle in the 
complex plane and apply the residue theorem. An infinite series representation 
of the the residue can be found that is absolutely convergent for all values of the 
parameters, and the series can be computed recursively. For fixed s the series is 
rapidly convergent and well-behaved for sufficiently small values of the ak and bk . 
However, for sufficiently large values of the a, and b, , the real and imaginary 
parts of the sequence of partial sums oscillate between very large positive and 
negative values before beginning to converge. Although, even in this case, the 
convergence is very rapid once it begins, the magnitude of the initial oscillations 
leads to serious inaccuracies in the final result with only modestly large values of 
the parameters ak and b, . However, the integral can be computed rapidly and 
accurately for a considerably larger range of the parameters ak and b, by modifying 
the method by the introduction of a type of scaling. 

In Section 2 we derive our basic method of computing the integral that is based on 
the series evaluation of a residue, and we discuss the scaling modification that 
extends the applicability of the method. An a posteriori error bound is given for the 
basic method. In Section 3 a numerical example is presented. 

2. DERIVATION OF THE RESIDUE METHOD 

A. The Basic Method 

To convert the integral into a line integral around the unit circle in the complex 
plane, we make the substitution z = eim in Eq. (1) and obtain 

Z(s; a,, bk) = & $,z,=l dz r-l exp [ 5 (cd - &i,z-k) 1, (2) 
k=l 

where 
Ollc = $(bk + iak) (24 

and a bar denotes complex conjugation. By the residue theorem, Z(S; a, , b,J is 
simply the coefficient of z+ in the Laurent expansion of the function 

f(z) = exp [ zl (akz’ - ~?kz-‘)], 

It is convenient to define functions P(z) and Q(Z) by 

P(z) = f (Ygzk 
k=l 

so that f(z) can be written as 

and Q(Z) = - 5 Sk.?, 
k=l 

f(z) = eP(z)eO(l/z) * 

(3) 

(4) 

(5) 
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We obtain the Laurent series for f(z) by multiplying the power series for exp P(z) 
by that for exp Q(l/z). Thus, if we set 

eP(z) = f c,zn and eO(lP) = i. d,rn, (6) 
n=o 

and adopt the convention 

ck = dk = 0 for k < 0, (W 

then 

f(z) = t e#, 
%=-a 

(7) 

where 

e, = f ci+,di 
i-0 

The coefficients c, and d, can be determined from recursion relations. To derive 
the recursion relation satisfied by the c, , we first define 

g(z) = eP(*), (9) 

and then differentiate g(z) to obtain 

g’ = gP’. Pa> 

By applying the Leibnitz rule for the differentiation of a product to Eq. (9a) we 
immediately obtain 

$ g(n) = g1 ; (; 7 :, g(n-k)P’k) 

Finally, by combining Eq. (10) with the formula c, = (l/n !) g(S)(O), we arrive at 
the recursion relation 

h4 
c, = 1 1 kolrcc,mle . 

n X=1 
(11) 
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The recursion relation for the d, can be derived by a completely analogous treat- 
ment of exp Q(Z). The result is 

d,, = - ; E k&d,-, . 
k=l 

(12) 

These M-term recursion relations can be used to determine the c, and d, starting 
from Eq. (6a) and the values of c,, and do given by 

co Z @-CO) = 1 and do = eQ(O) = 1. (13) 

The convergence properties of the sequence formed by the numbers c, can be 
discussed conveniently in terms of numbers t, defined by 

hfM)n’M 
c72 = r(1 + (n/M)) cn * (14) 

The M-term recursion relation, or difference equation, for the t, corresponding to 
Eq. (11) is 

M-l 

t, = c fk@> fn-k + fn-A4 , 
k-l 

(15) 

where 

kak(CL,&k~M r(n/M) 
“@) = Mr(l + (n - k)/M) ’ 

and the initial data are 

and to = 1, 
t, = 0 for n < 0. I 

(16) 

For large n we can use the asymptotic representation of the gamma function 
corresponding to Stirling’s formula to obtain 

fkcn) = k%(%kkiM 1 
M (x + 8)s (1 + &X)P (1 + Y2 + u (2 

= k%(%w)-k’M 
M ( 

-(M-M/M + * (3 , 
(18) 

where x = n/M and 8 = (M - k)/M. Thus, f&r) tends toward zero for large n, 
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and the difference equation for t, tends toward a linear difference equation with 
constant coefficients. The general solution of Eq. (15) when the f,(n) are constant 
is an arbitrary linear combination of the nth powers of the roots of the polynomial 

M-l 
yM- 1 fkyM-k- 1 

k=l 

as long as all of the roots are distinct. For large n this polynomial approaches 
yM - 1, all of whose roots are distinct and of unit modulus. Therefore, for every 
positive real number E, if the sequence I t, [ is unbounded, the terms must grow 
more slowly than (1 + E)“, and if the sequence tends toward zero, it must do so 
more slowly than (1 - E)~. That is, either the sequence 1 t, 1 converges to a nonzero 
complex number, or it diverges very slowly, or tends toward zero very slowly. 
Therefore, because of the gamma function in the denominator of Eq. (14), the 
1 c, 1 must eventually converge quite rapidly to zero. Exactly the same argument 
can be made for the d, by replacing ak by -2, . Since the sequences 1 c, 1 and 
1 d, 1 converge to zero rapidly, it is clear that the series for e, given by Eq. (8) 
converges absolutely and rapidly. 

There is a useful a posteriori bound on the error associated with approximating 
e, by truncating the sums in Eq. (8). Let 1 and N be integers such that 

I 3 0 and N > A = 5 k / 01~ j , 
?C=l 

and approximate e, and e-, by 

N 

t, = C ci+,di and tl = 5 cidi+, , 
i=O i=O 

respectively. In order to establish bounds on I e, - d, I and / e-, - & I, we first 
prove the following two lemmas. 

LEMMA 1: For any E > 0 and any integer s 3 0, if 

max{l c~-~ /, / dNPk I; k = l,..., it4) < E, 

I cN+s I G $& and I dN+s I < $$. 

The proof is by induction. Suppose that the lemma is true for 0 < s < s’ - 1. 
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Then, 

< &i g k / “k 1 1 CN+s’-k 1 
k-l 

EA 
<------ N+ s” 

since ) cN+s’--lc 1 < E when 1 < k - s’ G M and 1 c~+~‘-~ 1 < EA/(N + s’ - k) < E 
when 0 < s’ - k < s’ - 1. Similarly, 

Thus, the lemma is true for s = s’ if it is true for 0 < s < s’ - 1. But the lemma 
is true for s = 0. Therefore, it is true for all s > 0. 

LEMMA 2: For any E > 0, and any integers r > 0 and s 3 0, if 

maX(l cN+s-k I, 1 d,v+r-k I; k = I,..., M} d (c/AY2, 

then 

CN+s+kdiv+r+k < e. 

The proof is: 

I 5 CN+s+kdN+r+k < 2 / CN+s+k 1 1 dN+,+k 1 
k=l k=l 

(by Lemma 1) ’ kEl (N + s + l$V + r + k) 

’ EA {El (N : k)2 

m 

< rA 
I ,, (N~k~2 

The error bounds are expressed by the following theorem. 
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THEOREM: (a) rf 

max{l cN+Z-k 1, 1 dN-k I; k = h.., M) d (e/#‘“, 

then 

then 

( e-, - hz I ,( z. WW 

The proof of part (a) follows from Lemma 2 with r = 0 and s = I; the proof of 
part (b) follows from Lemma 2 with r = 1 and s = 0. 

Despite the fact that the series for e, given by Eq. (8) converges absolutely and 
rapidly, the results so far do not suffice for the practical computation of Z(s; a,, bk) 
except when the ak and bk are rather small. Even for a& and bk of moderate magni- 
tudes, the terms in the sequences c, and d, that come before rapid convergence 
can grow so large as to render the final value of e, computed from Eq. (8) very 
inaccurate. As an illustration, consider the case M = 1. Then we have 

cn = alA/n!, d,, = (-l)n or,@/n! and e, = f (- I)% (A”/n!)2, 
T&=0 

where A = ( 0~~ I. The sequence An/n! increases until n exceeds A. By using Stirling’s 
formula for 12 !, which is quite good for n 2 10, we find that the largest term in the 
sequence is approximately eA/(2wA)1/2. This quantity is 2.78 x 10S for A = 10 
and 4.33 x IO7 for A = 20. Thus, although I e, 1 is bounded by unity (because the 
integrand in Eq. (1) is of unit modulus), the series for e, will contain terms of 
order 1016 if A is 20, resulting in a loss of accuracy in e, of at least 15 digits. 

B. scaling Modification for Larger Values of ak and b, 

To modify the basic method for computing Z(s; ak , bK) so that larger values of 
the ak and bk can be allowed, we Start from the observation that Z(S; kl, , hbk), 
where h is a positive integer, is closely related to Z(s; ak , bk). In particular, if 
Z(S; ak , bk) is the coefficient of ZP in the Laurent expansion of f(z) as defined 
by Eq. (3), then Z(S; hal, , hb,) is the coefficient of z+ in the Laurent expansion 
of u(z)]“. SUppOSe that we want to compute Z(S; A, , Z&), where the A, and Bk are 
too large for direct application of the basic method described in the previous 
section. We first define another Set Of parameters, a& and bk , by 

ak = AR/X and 61, = &/h (20) 
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where h is a positive integer. By choosing A sufficiently large, we arrange that the 
c, and d,, computed from the uk and bti via Eqs. (11) and (12) die out rapidly and 
never exceed some predetermined magnitude that is consistent with the accuracy 
desired for the integral. We then compute the Laurent series for f(z) by means of 
Eq. (8), and raise that series to the power A. In practice we choose h to be a power 
of 2 so that the series for v(z)]” can be computed from the series for f(z) by 
repeated squaring. The integral Z(s; Ak , B,) is the coefficient of z-~ in the series 
for If(z)]“. 

This modification is very effective even for values of Al, and Bk that are 
considerably larger than those for which the basic method is practicable. By 
choosing X large enough we are able to calculate the series for-f(z) accurately and 
rapidly with the recursive formulas of the basic method. Once that is done, we 
are assured that the numbers that occur in computing the series for v(z)]” by 
repeated squaring of the series forf(z) will not give rise to large subtraction errors. 
The reason is that each coefficient in the series for Lf(z)lN, where N is any positive 
integer, is bounded in magnitude by unity, because each such coefficient is the 
value of an integral like that defined by Eq. (1) and these integrals are all bounded 
by unity. This property of the series for f(z) is important for the practical com- 
putation of If(z)]^. 

In the computation of the series for If(z)]” it is only necessary to keep those 
terms which, to within the accuracy required for the integral, contribute to If(z)]^ 
on the unit circle, because the integral that we are evaluating is a line integral 
around the unit circle. Suppose, for example, that one of the series to be computed 
as a step in the computation of the series for If(z)]” is 

[f(z)]” = f e”,zi, (21) 
is-m 

where N is an integer satisfying 1 < N < A. Because the coefficients e, in the series 
for f(z) die out rapidly for increasing I n I, the coefficients & die out rapidly for 
increasing 1 i I. Therefore, we can approximate If(z)lA adequately on the unit circle 
by a truncated series h(z) of the form 

h(z) = “c” &iZi, 
i=NL 

(22) 

where the limits NL and NU are so chosen that the I?< are sufficiently small for 
i < NL and i > NU. Because of the rapid convergence of the &, the & , the 
difference between v(z)]” and h(z) on the unit circle is of the same order of magni- 
tude as the larger of I &L ( and I &?NU I. Truncating the series for f(z) and its 
successive squares in this fashion renders the computation considerably simpler 
and faster. 
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3. A NUMERICAL EXAMPLE 

The success of the scaling procedure is illustrated by the following example. 
We set M = 3, a, = 10/k and bl, = 25/k, so that ka, = 12.5 + 5. With these 
data I@; ak , bk) was calculated for - 12 < J < 12 from Eqs. (S), (11) and (12) in 
both single and double precision with a CDC 6600 computer. The number of 
terms in Eq. (8) needed for convergence varied between 110 and 116. Since the 
largest terms were of order 1012, we expected errors of order 1O-2 in the single- 
precision computation, and of order lo-l6 in the double-precision computation; 
these expectations were realized. 

We then scaled the input parameters by choosing h = 8, and used Eqs. (8), (1 I), 
and (12) to compute in single precision all of the e, which are of magnitude greater 
than 10-14. This required computing the e, for -52 ,( n d 45. The number of terms 
in Eq. (8) required for convergence varied between 21 and 30. For each e, , no 
term in Eq. (8) was larger in magnitude than 3 nor larger than about 10 / e, I. The 
series forf(z) was squared and truncated, retaining only those e^i defined by Eq. (22) 
for which -71 < i < 58; it was squared again and truncated, this time retaining 
the t?, for which -102 < i < 79; then the expression was squared a final time. 
The I($; ak , bk), thus calculated, agreed with the results of the double-precision 
calculation to better than lo-l3 for all s in the range - 12 < s ,< 12. 
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